Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Int J Biol Macromol ; 263(Pt 1): 130678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458276

RESUMO

Kiwifruit is a climacteric fruit that is prone to ripening and softening. Understanding molecular regulatory mechanism of kiwifruit softening, is helpful to ensure long-term storage of fruit. In the study, two NAC TFs and two XTH genes were isolated from kiwifruit. Phylogenetic tree showed that both AcNAC1 and AcNAC2 belonged to NAP subfamily, AcXTH1 belong to I subfamily, and AcXTH2 belong to III subfamily. Bioinformatics analysis predicted that AcNAC1 and AcNAC2 possessed similar three-dimensional structural, and belonged to hydrophilic proteins. AcXTH1 and AcXTH2 were hydrophilic proteins and contained signal peptides. AcXTH1 had a transmembrane structure, but AcXTH2 did not. qRT-PCR results showed that AcNAC1, AcNAC2, AcXTH1 and AcXTH2 were increased during kiwifruit ripening. Correlation analysis showed that kiwifruit softening was closely related to endotransglucosylase/hydrolase genes and NAC TFs, as well as there was also a close relationship between AcXTHs and AcNACs. Moreover, both AcNAC1 and AcNAC2 were transcriptional activators located in nucleus, which bound to and activated the promoters of AcXTH1 and AcXTH2. In shortly, we proved that the roles of NAC TFs in mediating fruit softening during kiwifruit ripening. Altogether, our results clarified that AcNAC1 and AcNAC2 were transcriptional activators, and took part in kiwifruit ripening and softening through activating endotransglucosylase/hydrolase genes, providing a new insight of fruit softening network in kiwifruit ripening.


Assuntos
Actinidia , Frutas , Glicosiltransferases , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Actinidia/genética , Actinidia/metabolismo , Hidrolases/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Rep ; 43(3): 60, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334781

RESUMO

KEY MESSAGE: Exploring the potential action mechanisms of reactive oxygen species during the callus inducing, they can activate specific metabolic pathways in explants to regulate callus development. Reactive oxygen species (ROS) play an important role in the regulation of plant growth and development, but the mechanism of their action on plant callus formation remains to be elucidated. To address this question, kiwifruit was selected as the explant for callus induction, and the influence of ROS on callus formation was investigated by introducing propyl gallate (PG) as an antioxidant into the medium used for inducing callus. The results have unveiled that the inclusion of PG in the medium has disturbed the equilibrium of ROS during the formation of the kiwifruit callus. We selected the callus that was induced by the addition of 0.05 mmol/L PG to the MS medium. The callus exhibited a significant difference in the amount compared to the control medium without PG. The callus induced by the MS medium without PG was used as the control for comparison. KEGG enrichment indicated that PG exposure resulted in significant differences in gene expression in related pathways, such as phytohormone signaling and glutathione in kiwifruit callus. Weighted gene co-expression analysis indicated that the pertinent regulatory networks of both ROS and phytohormone signaling were critical for the establishment of callus in kiwifruit leaves. In addition, during the process of callus establishment, the ROS level of the explants was also closely related to the genes for transmembrane transport of substances, cell wall formation, and plant organ establishment. This investigation expands the theory of ROS-regulated callus formation and presents a new concept for the expeditious propagation of callus in kiwifruit.


Assuntos
Actinidia , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Galato de Propila/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Perfilação da Expressão Gênica/métodos , Actinidia/genética , Actinidia/metabolismo , Transcriptoma
3.
Plant Physiol Biochem ; 207: 108331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181641

RESUMO

High temperature is an environmental stressor that severely threatens plant growth, development, and yield. In this study, we obtained a kiwifruit mutant (MT) of 'Hongyang' (WT) through 60Co-γ irradiation. The MT possessed different leaf morphology and displayed prominently elevated heat tolerance compared to the WT genotype. When exposure to heat stress, the MT plants exhibited stabler photosynthetic capacity and accumulated less reactive oxygen species, along with enhanced antioxidant capacity and higher expression levels of related genes in comparison with the WT plants. Moreover, global transcriptome profiling indicated that an induction in genes related to stress-responsive, phytohormone signaling, and transcriptional regulatory pathways, which might contribute to the upgrade of thermotolerance in the MT genotype. Collectively, the significantly enhanced thermotolerance of MT might be mainly attributed to profitable leaf structure variations, improved photosynthetic and antioxidant capacities, as well as extensive transcriptome reprogram. These findings would be insightful in elucidating the sophisticated mechanisms of kiwifruit response to heat stress, and suggest the MT holds great potential for future kiwifruit improvement with enhanced heat tolerance.


Assuntos
Actinidia , Termotolerância , Termotolerância/genética , Antioxidantes/metabolismo , Actinidia/genética , Actinidia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Resposta ao Choque Térmico , Regulação da Expressão Gênica de Plantas , Frutas/metabolismo
4.
Plant J ; 118(2): 565-583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159243

RESUMO

The biogenesis and differentiation (B&D) of amyloplasts contributes to fruit flavor and color. Here, remodeling of starch granules, thylakoids and plastoglobules was observed during development and ripening in two kiwifruit (Actinidia spp.) cultivars - yellow-fleshed 'Hort16A' and green-fleshed 'Hayward'. A protocol was developed to purify starch-containing plastids with a high degree of intactness, and amyloplast B&D was studied using label-free-based quantitative proteomic analyses in both cultivars. Over 3000 amyloplast-localized proteins were identified, of which >98% were quantified and defined as the kfALP (kiwifruit amyloplast proteome). The kfALP data were validated by Tandem-Mass-Tag (TMT) labeled proteomics in 'Hort16A'. Analysis of the proteomic data across development and ripening revealed: 1) a conserved increase in the abundance of proteins participating in starch synthesis/degradation during both amyloplast B&D; 2) up-regulation of proteins for chlorophyll degradation and of plastoglobule-localized proteins associated with chloroplast breakdown and plastoglobule formation during amyloplast differentiation; 3) constitutive expression of proteins involved in ATP supply and protein import during amyloplast B&D. Interestingly, two different pathways of amyloplast B&D were observed in the two cultivars. In 'Hayward', significant increases in abundance of photosynthetic- and tetrapyrrole metabolism-related proteins were observed, but the opposite trend was observed in 'Hort16A'. In conclusion, analysis of the kfALP provides new insights into the potential mechanisms underlying amyloplast B&D with relevance to key fruit quality traits in contrasting kiwifruit cultivars.


Assuntos
Actinidia , Proteoma , Proteoma/metabolismo , Actinidia/genética , Actinidia/metabolismo , Proteômica/métodos , Frutas/metabolismo , Plastídeos/metabolismo , Amido/metabolismo
5.
J Agric Food Chem ; 71(48): 18865-18876, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053505

RESUMO

Most red-fleshed kiwifruit cultivars, such as Hongyang, only accumulate anthocyanins in the inner pericarp; the trait of full red flesh becomes the goal pursued by breeders. In this study, we identified a mutant "H-16" showing a red color in both the inner and outer pericarps, and the underlying mechanism was explored. Through transcriptome analysis, a key differentially expressed gene AcGST1 was screened out, which was positively correlated with anthocyanin accumulation in the outer pericarp. The result of McrBC-PCR and bisulfite sequencing revealed that the SG3 region (-292 to -597 bp) of AcGST1 promoter in "H-16" had a significantly lower CHH cytosine methylation level than that in Hongyang, accompanied by low expression of methyltransferase genes (MET1 and CMT2) and high expression of demethylase genes (ROS1 and DML1). Transient calli transformation confirmed that demethylase gene DML1 can activate transcription of AcGST1 to enhance its expression. Overexpression of AcGST1 enhanced the anthocyanin accumulation in the fruit flesh and leaves of the transgenic lines. These results suggested that a decrease in the methylation level of the AcGST1 promoter may contribute to accumulation of anthocyanin in the outer pericarp of "H-16".


Assuntos
Actinidia , Frutas , Frutas/química , Antocianinas/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Metilação de DNA , Actinidia/genética , Actinidia/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139009

RESUMO

Ascorbic acid is a potent antioxidant and a crucial nutrient for plants and animals. The accumulation of ascorbic acid in plants is controlled by its biosynthesis, recycling, and degradation. Monodehydroascorbate reductase is deeply involved in the ascorbic acid cycle; however, the mechanism of monodehydroascorbate reductase genes in regulating kiwifruit ascorbic acid accumulation remains unclear. Here, we identified seven monodehydroascorbate reductase genes in the genome of kiwifruit (Actinidia eriantha) and they were designated as AeMDHAR1 to AeMDHAR7, following their genome identifiers. We found that the relative expression level of AeMDHAR3 in fruit continued to decline during development. The over-expression of kiwifruit AeMDHAR3 in tomato plants improved monodehydroascorbate reductase activity, and, unexpectedly, ascorbic acid content decreased significantly in the fruit of the transgenic tomato lines. Ascorbate peroxidase activity also increased significantly in the transgenic lines. In addition, a total of 1781 differentially expressed genes were identified via transcriptomic analysis. Three kinds of ontologies were identified, and 106 KEGG pathways were significantly enriched for these differently expressed genes. Expression verification via quantitative real-time PCR analysis confirmed the reliability of the RNA-seq data. Furthermore, APX3, belonging to the ascorbate and aldarate metabolism pathway, was identified as a key candidate gene that may be primarily responsible for the decrease in ascorbic acid concentration in transgenic tomato fruits. The present study provides novel evidence to support the feedback regulation of ascorbic acid accumulation in the fruit of kiwifruit.


Assuntos
Actinidia , Solanum lycopersicum , Ácido Ascórbico/metabolismo , Frutas/metabolismo , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Actinidia/genética , Actinidia/metabolismo , Reprodutibilidade dos Testes , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958622

RESUMO

Heat shock transcription factors (HSFs) play a crucial role in regulating plant growth and response to various abiotic stresses. In this study, we conducted a comprehensive analysis of the AeHSF gene family at genome-wide level in kiwifruit (Actinidia eriantha), focusing on their functions in the response to abiotic stresses. A total of 41 AeHSF genes were identified and categorized into three primary groups, namely, HSFA, HSFB, and HSFC. Further transcriptome analysis revealed that the expression of AeHSFA2b/2c and AeHSFB1c/1d/2c/3b was strongly induced by salt, which was confirmed by qRT-PCR assays. The overexpression of AeHSFA2b in Arabidopsis significantly improved the tolerance to salt stress by increasing AtRS5, AtGolS1 and AtGolS2 expression. Furthermore, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays demonstrated that AeHSFA2b could bind to the AeRFS4 promoter directly. Therefore, we speculated that AeHSFA2b may activate AeRFS4 expression by directly binding its promoter to enhance the kiwifruit's tolerance to salt stress. These results will provide a new insight into the evolutionary and functional mechanisms of AeHSF genes in kiwifruit.


Assuntos
Actinidia , Tolerância ao Sal , Tolerância ao Sal/genética , Actinidia/genética , Actinidia/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
8.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958739

RESUMO

Ion transport is crucial for salt tolerance in plants. Under salt stress, the high-affinity K+ transporter (HKT) family is mainly responsible for the long-distance transport of salt ions which help to reduce the deleterious effects of high concentrations of ions accumulated within plants. Kiwifruit is well known for its susceptibility to salt stress. Therefore, a current study was designed to decipher the molecular regulatory role of kiwifruit HKT members in the face of salt stress. The transcriptome data from Actinidia valvata revealed that salt stress significantly induced the expression of AvHKT1. A multiple sequence alignment analysis indicated that the AvHKT1 protein contains three conserved amino acid sites for the HKT family. According to subcellular localization analysis, the protein was primarily present in the cell membrane and nucleus. Additionally, we tested the AvHKT1 overexpression in 'Hongyang' kiwifruit, and the results showed that the transgenic lines exhibited less leaf damage and improved plant growth compared to the control plants. The transgenic lines displayed significantly higher SPAD and Fv/Fm values than the control plants. The MDA contents of transgenic lines were also lower than that of the control plants. Furthermore, the transgenic lines accumulated lower Na+ and K+ contents, proving this protein involvement in the transport of Na+ and K+ and classification as a type II HKT transporter. Further research showed that the peroxidase (POD) activity in the transgenic lines was significantly higher, indicating that the salt-induced overexpression of AvHKT1 also scavenged POD. The promoter of AvHKT1 contained phytohormone and abiotic stress-responsive cis-elements. In a nutshell, AvHKT1 improved kiwifruit tolerance to salinity by facilitating ion transport under salt stress conditions.


Assuntos
Actinidia , Tolerância ao Sal , Tolerância ao Sal/genética , Actinidia/genética , Actinidia/metabolismo , Proteínas de Plantas/metabolismo , Estresse Salino , Proteínas de Membrana Transportadoras/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Antioxidantes/farmacologia , Íons/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Food Res Int ; 173(Pt 1): 113276, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803588

RESUMO

Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.


Assuntos
Actinidia , Transcriptoma , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Metaboloma , Actinidia/genética , Actinidia/metabolismo , Carotenoides/metabolismo , Clorofila
10.
Int J Biol Macromol ; 253(Pt 6): 127141, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776924

RESUMO

Kiwifruit pomace is abundant in polysaccharides that exhibit diverse biological activities and prebiotic potential. This study delves into the digestive behavior and fermentation characteristics of kiwifruit pomace polysaccharides (KFP) through an in vitro simulated saliva-gastrointestinal digestion and fecal fermentation. The results reveal that following simulated digestion of KFP, its molecular weight reduced by 4.7%, and the reducing sugar (CR) increased by 9.5%. However, the monosaccharide composition and Fourier transform infrared spectroscopy characteristics showed no significant changes, suggesting that KFP remained undigested. Furthermore, even after saliva-gastrointestinal digestion, KFP retained in vitro hypolipidemic and hypoglycemic activities. Subsequently, fecal fermentation significantly altered the physicochemical properties of indigestible KFP (KFPI), particularly leading to an 89.71% reduction in CR. This indicates that gut microbiota could decompose KFPI and metabolize it into SCFAs. Moreover, after 48 h of KFPI fecal fermentation, it was observed that KFPI contributed to maintaining the balance of gut microbiota by promoting the proliferation of beneficial bacteria like Bacteroides, Lactobacillus, and Bifidobacterium, while inhibiting the unfavorable bacteria like Bilophila. In summary, this study offers a comprehensive exploration of in vitro digestion and fecal fermentation characteristics of KFP, providing valuable insights for potential development of KFP as a prebiotic for promoting intestinal health.


Assuntos
Actinidia , Microbioma Gastrointestinal , Humanos , Fermentação , Digestão , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fezes/microbiologia , Prebióticos , Actinidia/metabolismo , Ácidos Graxos Voláteis/metabolismo
11.
J Agric Food Chem ; 71(27): 10304-10313, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37381782

RESUMO

Gray mold caused by Botrytis cinerea leads to huge economic losses to the kiwifruit (Actinidia chinensis) industry. Elucidating the molecular mechanism responding to B. cinerea is the theoretical basis for the resistance to molecular breeding of kiwifruit. Previous studies have shown that miR160 regulates plant disease resistance through the indole-3-acetic acid (IAA) signaling pathway. In this study, kiwifruit "Hongyang" was used as the material, and Ac-miR160d and its target genes were identified and cloned. Overexpression and virus-induced gene silencing (VIGS) technology combined with RNA-seq were adopted to analyze the regulatory role of Ac-miR160d in kiwifruit resistance to B. cinerea. Silencing Ac-miR160d (AcMIR160d-KN) increased kiwifruit sensitivity to B. cinerea, whereas overexpression of Ac-miR160d (AcMIR160d-OE) increased kiwifruit resistance to B. cinerea, suggesting that Ac-miR160d positively regulates kiwifruit resistance to B. cinerea. In addition, overexpression of Ac-miR160d in kiwifruit increased antioxidant enzyme activities, such as catalase (CAT) and superoxide dismutase (SOD), and endogenous phytohormone IAA and salicylic acid (SA) content, in response to B. cinerea-induced stress. RNA-seq identified 480 and 858 unique differentially expressed genes in the AcMIR160d-KN vs CK and AcMIR160d-OE vs CK groups, respectively, with fold change ≥2 and false discovery rate <0.01. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that families associated with "biosynthesis of secondary metabolites" are possibly regulated by Ac-miR160d. "Phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "terpenoid backbone biosynthesis" were further activated in the two comparison groups upon B. cinerea infection. Our results may reveal the molecular mechanism by which miR160d regulates kiwifruit resistance to B. cinerea and may provide gene resources for molecular breeding in kiwifruit resistance.


Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Botrytis/fisiologia , Transdução de Sinais , Doenças das Plantas/genética , Resistência à Doença/genética
12.
J Sci Food Agric ; 103(12): 6055-6069, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127927

RESUMO

BACKGROUND: Actinidia eriantha is one of the most important kiwifruit species in Actinidia. The relative high accumulation of organic acids in fruit of A. eriantha is an unfavorable factor for organoleptic quality. To identify key metabolic enzymes and genes involved in organic acids accumulation during fruit development, physiological, biochemical, and molecular experiments were conducted for the dynamic fruit samples of a new kiwifruit cultivar, A. eriantha 'Ganlv 1'. RESULTS: The contents of citric acid and malic acid increased greatly during fruit development, while quinic acid content decreased obviously. Significant positive correlations were observed between fruit titratable acidity and the contents of both citric acid and malic acid, and a significant negative correlation was found between fruit titratable acidity and the quinic acid content. The high accumulation of citric acid was found to be caused by the increased activity of citrate synthase (CS), and the decreased activities of two degradation-related enzymes, mitochondrial aconitase and nicotinamide adenine dinucleotide (NAD)-dependent isocitrate dehydrogenase. In addition, the accumulation of malic acid depended mainly on the increased synthesis catalyzed by NAD-dependent malate dehydrogenase (NAD-MDH) and phosphoenolpyruvate carboxylase. Further analysis suggested that AeCS2 and AeMDH2 played pivotal roles in controlling the activities of CS and NAD-MDH respectively. CONCLUSION: The high accumulation level of citric acid relied on both the strong synthesis ability and the weak degradation ability. The accumulation level of malic acid was mainly affected by the synthesis. The novel information would be helpful for our understanding of the formation of fruit acidity quality. © 2023 Society of Chemical Industry.


Assuntos
Actinidia , Frutas , Actinidia/genética , Actinidia/metabolismo , Ácido Cítrico/metabolismo , NAD/metabolismo , Ácido Quínico/metabolismo , Ácidos/metabolismo
13.
Plant J ; 115(6): 1528-1543, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37258460

RESUMO

Despite the importance of hybridization in evolution, the evolutionary consequence of homoploid hybridizations in plants remains poorly understood. Specially, homoploid hybridization events have been rarely documented due to a lack of genomic resources and methodological limitations. Actinidia zhejiangensis was suspected to have arisen from hybridization of Actinidia eriantha and Actinidia hemsleyana or Actinidia rufa. However, this species was very rare in nature and exhibited sympatric distribution with its potential parent species, which implied it might be a spontaneous hybrid of ongoing homoploid hybridization. Here, we illustrate the dead-end homoploid hybridization and genomic basis of isolating barriers between A. eriantha and A. hemsleyana through whole genome sequencing and population genomic analyses. Chromosome-scale genome assemblies of A. zhejiangensis and A. hemsleyana were generated. The chromosomes of A. zhejiangensis are confidently assigned to the two haplomes, and one of them originates from A. eriantha and the other originates from A. hemsleyana. Whole genome resequencing data reveal that A. zhejiangensis are mainly F1 hybrids of A. hemsleyana and A. eriantha and gene flow initiated about 0.98 million years ago, implying both strong genetic barriers and ongoing hybridization between these two deeply divergent kiwifruit species. Five inversions containing genes involved in pollen germination and pollen tube growth might account for the fertility breakdown of hybrids between A. hemsleyana and A. eriantha. Despite its distinct morphological traits and long recurrent hybrid origination, A. zhejiangensis does not initiate speciation. Collectively, our study provides new insights into homoploid hybridization in plants and provides genomic resources for evolutionary and functional genomic studies of kiwifruit.


Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Hibridização Genética , Genoma , Genômica , Plantas/genética , Especiação Genética
14.
Bioorg Chem ; 134: 106466, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934691

RESUMO

Actinidia polygama has been used as a traditional medicine for treating various diseases. In the present study, 13 compounds, including three new monoterpenoids (1-3), were isolated from the leaves of A. polygama to investigate the bioactive constituents of the plant. The structures were characterized by analyzing spectroscopic and chiroptical data. These compounds were preliminarily screened for their ability to increase insulin secretion levels after glucose stimulation. Of these, 3-O-coumaroylmaslinic acid (4) and jacoumaric acid (5) showed activity. In further biological studies, these compounds exhibited increased glucose-stimulated insulin secretion (GSIS) activity without cytotoxicity in rat INS-1 pancreatic ß-cells as well as α-glucosidase inhibitory activity. Furthermore, both compounds increased insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), pancreatic and duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression. Hence, these compounds may be developed as potential antidiabetic agents.


Assuntos
Actinidia , alfa-Glucosidases , Ratos , Animais , Secreção de Insulina , alfa-Glucosidases/metabolismo , Actinidia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glucose/metabolismo , Insulina/metabolismo
15.
Food Res Int ; 164: 112412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737992

RESUMO

Forchlorfenuron (CPPU) is a plant growth regulator widely applied on kiwifruit to improve yield, however, there are rarely reports on its effects on the nutrients of kiwifruits. Based on UHPLC-Q-TOF-MS, the effects of CPPU on metabolism profile and nutrient substances of two kiwifruit varieties during development were investigated by non-targeted metabolomics. A total of 115 metabolites were identified, and 29 differential metabolites were confirmed and quantified using certified reference standards. Metabolic profile indicated that CPPU promoted kiwifruit development during the main expansion stages at the molecular level, and the effects varied slightly for different varieties. In the early and middle stages of kiwifruit development, the anthocyanin, flavone and flavonol biosynthesis were down-regulated in both varieties, and flavanols biosynthesis was down-regulated only in Hayward variety. Arginine biosynthesis was down-regulated at all stages till the harvest. Although the synthesis of these nutrient substances in kiwifruits was mostly down-regulated by CPPU, the negative effects became mild at harvest time, and positively, the significant increase of sucrose and decrease of organic acids at harvest time could help to improve the taste of kiwifruits.


Assuntos
Actinidia , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Polietilenoglicóis/farmacologia , Poliuretanos/farmacologia , Actinidia/metabolismo
16.
New Phytol ; 238(5): 2064-2079, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843264

RESUMO

Kiwifruit (Actinidia chinensis) is one of the popular fruits world-wide, and its quality is mainly determined by key metabolites (sugars, flavonoids, and vitamins). Previous works on kiwifruit are mostly done via a single omics approach or involve only limited metabolites. Consequently, the dynamic metabolomes during kiwifruit development and ripening and the underlying regulatory mechanisms are poorly understood. In this study, using high-resolution metabolomic and transcriptomic analyses, we investigated kiwifruit metabolic landscapes at 11 different developmental and ripening stages and revealed a parallel classification of 515 metabolites and their co-expressed genes into 10 distinct metabolic vs gene modules (MM vs GM). Through integrative bioinformatics coupled with functional genomic assays, we constructed a global map and uncovered essential transcriptomic and transcriptional regulatory networks for all major metabolic changes that occurred throughout the kiwifruit growth cycle. Apart from known MM vs GM for metabolites such as soluble sugars, we identified novel transcription factors that regulate the accumulation of procyanidins, vitamin C, and other important metabolites. Our findings thus shed light on the kiwifruit metabolic regulatory network and provide a valuable resource for the designed improvement of kiwifruit quality.


Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Transcriptoma/genética
17.
Physiol Plant ; 175(2): e13880, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36840627

RESUMO

At the outer canopy, the white leaves of Actinidia kolomikta can turn pink but they stay white in A. polygama. We hypothesized that the different leaf colors in the two Actinidia species may represent different photoprotection strategies. To test the hypothesis, leaf optical spectra, anatomy, chlorophyll a fluorescence, superoxide (O2 ˙- ) concentration, photosystem II photo-susceptibility, and expression of anthocyanin-related genes were investigated. On the adaxial side, light reflectance was the highest for white leaves of A. kolomikta, followed by its pink leaves and white leaves of A. polygama, and the absorptance for white leaves of A. kolomikta was the lowest. Chlorophyll and carotenoid content of white and pink leaves in A. kolomikta were significantly lower than those of A. polygama, while the relative anthocyanin content of pink leaves was the highest. Chloroplasts of palisade cells of white leaves in A. kolomikta were not well developed with a lower maximum quantum efficiency of PSII than the other types of leaves (pink leaves of A. kolomikta and white leaves of A. Polygama at the inner/outer canopy). After high light treatment from the abaxial surface, Fv /Fm decreased to a larger extent for white leaves of A. kolomikta than pink leaf and white leaves of A. polygama, and its non-photochemical quenching was also the lowest. White leaves of A. kolomikta showed higher O2 ˙- concentration compared to pink leaves under the same strong irradiance. The expression levels of anthocyanin biosynthetic genes in pink leaves were higher than in white leaves. These results indicate that white leaves of A. kolomikta apply a reflection strategy for photoprotection, while pink leaves resist photoinhibition via anthocyanin accumulation.


Assuntos
Actinidia , Actinidia/metabolismo , Clorofila A/análise , Antocianinas/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Luz
18.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768313

RESUMO

The STAY-GREEN (SGR) proteins play an important role in chlorophyll (Chl) degradation and are closely related to plant photosynthesis. However, the availability of inadequate studies on SGR motivated us to conduct a comprehensive study on the identification and functional dissection of SGR superfamily members in kiwifruit. Here, we identified five SGR genes for each of the kiwifruit species [Actinidia chinensis (Ac) and Actinidia eriantha (Ae)]. The phylogenetic analysis showed that the kiwifruit SGR superfamily members were divided into two subfamilies the SGR subfamily and the SGRL subfamily. The results of transcriptome data and RT-qPCR showed that the expression of the kiwifruit SGRs was closely related to light and plant developmental stages (regulated by plant growth regulators), which were further supported by the presence of light and the plant hormone-responsive cis-regulatory element in the promoter region. The subcellular localization analysis of the AcSGR2 protein confirmed its localization in the chloroplast. The Fv/Fm, SPAD value, and Chl contents were decreased in overexpressed AcSGR2, but varied in different cultivars of A. chinensis. The sequence analysis showed significant differences within AcSGR2 proteins. Our findings provide valuable insights into the characteristics and evolutionary patterns of SGR genes in kiwifruit, and shall assist kiwifruit breeders to enhance cultivar development.


Assuntos
Actinidia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Actinidia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Clorofila/genética , Clorofila/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Plant Physiol ; 192(2): 982-999, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36823691

RESUMO

Cold stress seriously affects plant development, resulting in heavy agricultural losses. L-ascorbic acid (AsA, vitamin C) is an antioxidant implicated in abiotic stress tolerance and metabolism of reactive oxygen species (ROS). Understanding whether and how cold stress elicits AsA biosynthesis to reduce oxidative damage is important for developing cold-resistant plants. Here, we show that the accumulation of AsA in response to cold stress is a common mechanism conserved across the plant kingdom, from single-cell algae to angiosperms. We identified a basic leucine zipper domain (bZIP) transcription factor (TF) of kiwifruit (Actinidia eriantha Benth.), AcePosF21, which was triggered by cold and is involved in the regulation of kiwifruit AsA biosynthesis and defense responses against cold stress. AcePosF21 interacted with the R2R3-MYB TF AceMYB102 and directly bound to the promoter of the gene encoding GDP-L-galactose phosphorylase 3 (AceGGP3), a key conduit for regulating AsA biosynthesis, to up-regulate AceGGP3 expression and produce more AsA, which neutralized the excess ROS induced by cold stress. On the contrary, VIGS or CRISPR-Cas9-mediated editing of AcePosF21 decreased AsA content and increased the generation of ROS in kiwifruit under cold stress. Taken together, we illustrated a model for the regulatory mechanism of AcePosF21-mediated regulation of AceGGP3 expression and AsA biosynthesis to reduce oxidative damage by cold stress, which provides valuable clues for manipulating the cold resistance of kiwifruit.


Assuntos
Actinidia , Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Resposta ao Choque Frio/genética , Espécies Reativas de Oxigênio/metabolismo , Actinidia/genética , Actinidia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Ascórbico/metabolismo , Regulação da Expressão Gênica de Plantas , Frutas/genética , Frutas/metabolismo
20.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614245

RESUMO

Fruit plants are severely constrained by salt stress in the soil due to their sessile nature. Ca2+ sensors, which are known as CBL-interacting protein kinases (CIPKs), transmit abiotic stress signals to plants. Therefore, it is imperative to investigate the molecular regulatory role of CIPKs underlying salt stress tolerance in kiwifruit. In the current study, we have identified 42 CIPK genes from Actinidia. valvata (A.valvata). All the AvCIPKs were divided into four different phylogenetic groups. Moreover, these genes showed different conserved motifs. The expression pattern analysis showed that AvCIPK11 was specifically highly expressed under salt stress. The overexpression of AvCIPK11 in 'Hongyang' (a salt sensitive commercial cultivar from Actinidia chinensis) enhanced salt tolerance by maintaining K+/Na+ homeostasis in the leaf and positively improving the activity of POD. In addition, the salt-related genes AcCBL1 and AcNHX1 had higher expression in overexpression lines. Collectively, our study suggested that AvCIPK11 is involved in the positive regulation of salt tolerance in kiwifruit.


Assuntos
Actinidia , Transcriptoma , Actinidia/genética , Actinidia/metabolismo , Filogenia , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...